WePrint PRIME
Fine top side. For the best printability. Forming fabrics for graphic paper.
Your needs. Our motivation.

At ANDRITZ, we draw our motivation for innovative solutions from the requirements of our customers.

Our products offer

The best dewatering

- Adapted dewatering capacity
- The smallest possible fabric thickness
- Little water retention tendency

→ Optimal dry content

The best paper-side topography

- The highest level of fiber support
- The best formation
- Lack of markings

→ The best paper quality and printability

Excellent dimensional stability

- Laterally stable fabric run – continuous openness
- Laterally stable fabric run – clean fabric run
- Laterally stable fabric run – optimal profiles

→ Noticeable increase in running time
Positive impacts on your process

Energy savings

- The lowest friction values vs. ceramic
- Effective vacuum dewatering
- Reduction of drying energy due to dry content

⇒ Added value due to development close to the market

Machine hygiene

- No water/fiber trails
- Efficient cleaning
- Clean fabric run

⇒ The best machine hygiene

Machine efficiency

- The highest production speeds
- Long running time expected
- Short shutdown times

⇒ Machine efficiency
The challenge
The highest level of formation for printability
Forming fabrics for graphic paper

Our goal
- Optimal dewatering performance and the highest level of fiber support
- Symmetrical sheet structure for better printability and runnability.

The key to success
- A range of types that can be uniquely combined with coordinated air permeability, variable running time potentials and ultra-fine surface structures for production of the most demanding paper.
Our solution
Structure-bound fabric in weft-bound design

The result
Technologically coordinated product portfolio for the respective type of paper machine or paper grade
- The best printability and optimal formation
- Excellent machine hygiene, no water trails
- Reduced energy input with the same or higher dry content
WePrint PRIME GE

The result of intelligent product design: WePrint PRIME fulfills all the requirements for the highest paper quality.

Characteristics

- The highest paper-side topography and fiber support
- Dimensionally stable structure on the machine side

Also available in 3:2 and 1:1 weft ratios and as E-Line
You can find information on E-Line from page 10 on.
Paper side
Progressive open and fine paper-side basket weave for the highest paper quality.

Machine side
Adjustable yarn diameters for systematic and resource-conserving machine shutdowns. Adjustable yarn diameters for systematic and resource-conserving machine shutdowns.

Benefits
- Very good printability
- Stable machine side
- Good running time potential
WePrint PRIME GX

The best fiber support and optimal dewatering for a symmetrical sheet structure long-floating-machine-side weft diameters give a long expected running time.

Characteristics

- Finely structured surface with a high level of fiber support
- Long-floating machine-side yarns

Also available as E-Line
You can find information on E-Line from page 10 on.
Paper side

Progressive open and fine paper-side basket weave for the highest paper quality.

Machine side

Adjustable long-floating yarn diameters for systematic and resource-conserving machine shutdowns.

Benefits

- Very low marking tendency
- Very good printability
- Good running time potential
The idea
In the last decade, reduction of energy consumption has become the most important aspect of sustainable development for the paper industry. Not just due to environmental relevance, but also as a significant cost factor in today’s paper production. This demands an increase in efficiency through new materials and designs because reduced energy consumption of course means cost savings. Depending on the paper grade, the average energy consumption of a paper machine fluctuates around 90 kWh/t. In general, around 15% of this energy is used in the wet section. Because the fabric drive and suction units consume 70-80% of this portion, substantial energy savings become possible through the use of ANDRITZ Kufferath E-LINE fabrics due to their lower friction coefficient.

The key to success
Due to innovative yarn technologies, the required drive energy is significantly lowered without having to put up with restrictions in the running behavior of the forming fabrics or in their sheet formation characteristics.
The new generation of fabrics for higher yields

30% savings
In comparison to the polyester/polyamide fabrics still predominantly used today, a fabric produced with E-Line yarns achieves energy savings of up to 30%. Abrasion-related changes in the fabrics appear substantially later due to lower vacuums. The preconditions for optimal sheet formation similar to that of a new fabric are preserved longer.

Benefits
- Reduced energy costs
- Improved running characteristics
- Increase in paper production
- No change in operation of the paper machine
- Easy unchanged handling of the fabric clothing
ANDRITZ

Take advantage of sound process know-how from a single source

Experienced in innovation

With more than 200 years of experience in paper manufacturing, our current products are perfectly tailored to ensure a positive and lasting impact on your process efficiency. All design innovations focus on quality, productivity and energy efficiency, regardless of the manufacturer and type of your paper machine.

WePrint PRIME

- Very good printability
- Little marking tendency
- Stable machine side
- Good running time potential

ANDRITZ Kufferath GmbH

Lommessemstraße 32
52353 Düren, Germany
Phone: +49 (2421) 8010
kufferath@andritz.com
www.andritz.com

ANDRITZ AG

Stattegger Strasse 18
8045 Graz, Austria
Phone: +43 (316) 6902 0
pulpandpaper@andritz.com
www.andritz.com

All data, information, statements, photographs and graphic illustrations in this leaflet are without any obligation and raise no liabilities to or form part of any sales contracts of Andritz AG or any affiliates for equipment and/or systems referred to herein. © Andritz AG 2014. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of Andritz AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws. Andritz AG, Stattegger Strasse 18, 8045 Graz, Austria.