CLEAN AIR FOR A BETTER TOMORROW

AIR POLLUTION CONTROL

ANDRITZ
ENGINEERED SUCCESS
ENGINEERED SUCCESS

WORKING HAND IN HAND WITH THE ENVIRONMENT:

FROM SINGLE SYSTEMS TO TURNKEY PLANTS

WET LIMESTONE FLUE GAS DESULPHURIZATION & FGDPLUS

SEAWATER FLUE GAS DESULPHURIZATION

TURBO-CDS – THE RIGHT CHOICE

DRY FLUE GAS CLEANING SYSTEMS

PARTICULATE REMOVAL TECHNOLOGIES

DENOX/SELECTIVE CATALYTIC REDUCTION (SCR)

MULTI-STAGE FLUE GAS CLEANING

MERCURY CONTROL

EXHAUST GAS CLEANING

REFERENCES

ANDRITZ AIR POLLUTION CONTROL PROVIDES SOLUTIONS FOR THE FOLLOWING INDUSTRIES:

PAPER POWER OTHERS
Working hand in hand with the environment

ANDRITZ is a leading global supplier of innovative air pollution control technologies. Our product range combines 30+ years’ experience with the specific knowledge gained from over 200 installations around the world. ANDRITZ offers high-end technologies and is a partner you can rely on.

Thanks to our wide portfolio of flue gas cleaning technologies and extensive experience in executing projects, ANDRITZ is more than capable of handling all of the challenges involved in your project. We are reliable and innovative – an ideal partner to help you meet your environmental and financial goals. Maintaining the energy efficiency of your processes, complying with the most stringent environmental regulations and developing tailor-made solutions for your plant are the cornerstones of our approach. With offices in the USA, Europe, South America, and Asia, ANDRITZ is able to provide well-proven solutions for each respective market and has the dedicated personnel to meet all clients’ needs.

AIR POLLUTION CONTROL TECHNOLOGY

APPLICATIONS FOR

- Utility power industry
- Waste to Energy / Sludge incineration
- Pulp & Paper
- Mining & Metals industry
- Oil & Refinery industry
- Marine industry
Clean air is the basis of a healthy life. Air pollution causes discomfort or harm to human beings and other living organisms. It is our mission to prevent air pollution from power generation and industrial processes.

Even with heavy subsidies and incentives, renewable and environmentally friendly energy sources will only meet part of the world’s future demand for power. Reliance on thermal power stations will continue to be important for the future. With this reality, it is critical to make thermal power generation cleaner and more sustainable. It is our mission to allow power plants to continue in long-term operation without impacting the environment.

ANDRITZ delivers environmentally friendly flue gas cleaning solutions, tailored to the needs of our clients and their operating environments. We are an environmental technology pioneer with a history in air pollution control spanning 30+ years. Our products range from flue gas scrubbers and SCRs for power stations to complex flue gas cleaning systems for waste-to-energy and industrial plants. Use of cutting-edge engineering tools and global R&D collaboration with a network of recognized partners and universities are the foundations of our work. Early identification of each client’s needs help us make a long-term contribution to clean air and a clean environment.
WET FLUE GAS CLEANING
ANDRITZ offers wet limestone flue gas desulphurization (WFGD) scrubbers with high reliability and availability based on a well-known principle of washing flue gas with a limestone slurry and generating gypsum as a saleable end product. We have enhanced this basic process and now offer the most advanced scrubbing technology (FGDplus).

Several design options are available to choose from depending on the upstream processes and potential pollutants to be filtered out, including tailored solutions for industrial applications. Our goal is the removal of acid gases (SOx, HCl, HF), particulate matter, mercury (Hg), heavy metals and nitrogen oxides (NO), dioxins and furans.

POWER STATION APPLICATIONS
• Wet limestone FGD
• FGDplus
• Mercury control
• Seawater FGD
• Post Carbon Capture/CO₂ absorption

INDUSTRIAL APPLICATIONS
• Wet flue gas cleaning (calcium and sodium based)
• Multi-stage scrubber
• Combined system
• Mercury control
• SeaSOx, open/closed/hybrid loop
DRY FLUE GAS CLEANING
ANDRITZ dry flue gas scrubbing processes are based on circulating fluidized bed technology and offer an ideal solution for flue gas cleaning downstream of conventional thermal power stations, biomass incineration plants, RDF-fired boilers (Refuse Derived Fuels), or waste-to-energy plants and other industrial applications.

DeNOx SYSTEMS – SCR
ANDRITZ offers Selective Catalytic Reduction (SCR) technology for the de-nitrification of flue gas. High- and low-dust as well as tail-end configurations are available. Dioxins and furans can also be removed with the SCR tail-end configuration.

POWER STATION APPLICATIONS
- Dry sorption
- Turbo-CDS/TurboSorp
- Mercury control
- Particulate control

POWER STATION APPLICATIONS
- SCR (high-dust, low-dust, or tail-end application)
- SCR for combined cycle power plants (CCPP)

INDUSTRIAL APPLICATIONS
- Dry sorption
- TurboSorp
- Particulate control
- Spray absorption
- Mercury Control
- SeaSOx, dry

INDUSTRIAL APPLICATIONS
- SCR (low dust and tail end application)
- SNCR
Wet flue gas desulphurization systems – Highly efficient processes for low emissions

Limestone flue gas desulphurization systems (FGDs) are well-proven and cost-effective. They have been in use in power stations since the 1970s. Over the years, we have created an advanced scrubber design with outstanding reliability and excellent availability. Plant economics have also been optimized, ensuring low capital and operating costs.

LIMESTONE FGD: A NEW DIMENSION

ANDRITZ has set a new global standard of excellence with its wet limestone FGD design, featuring the world’s largest wet scrubbers at the Neurath power plant (2 × 1,100 MW). These two scrubbers (with diameter of 23.6 m / 77.4 ft) have been operating successfully since 2008, and each one can accommodate a flue gas flow of 4.75 million m³/h or 2.8 million ACFM.

The unique scrubber design combined with optimum use of our technology to meet our customers’ needs has become our trademark. Technical and economic optimization guarantees lower capital and operating costs.

KEY FEATURES

• Outstanding for all fuels (lignite, hard coal, oil, biomass, waste)
• SO₂ removal > 99%
• Maximum HCl and HF removal levels
• Gypsum as a saleable end product
• Flue gas volume flows of up to 5 million m³/h [stp, wet] per scrubber
• Limestone as a favorably priced absorption agent
• Low operating costs and power consumption
• Open spray tower, low pressure loss
• Options for materials of construction (high-alloy carbon steel with rubber lining, concrete with PP-lining, glass fiber reinforced plastics)
LIMESTONE FGD: ADVANCED SCRUBBER DESIGN

The nucleus of our design is the scrubber, which is an open spray tower that has been enhanced using computerized simulation techniques. We have been conducting intensive development work in this field since 1995 and today enjoy a leading position that not only allows us to simulate flow and temperature profiles, but also to calculate the distribution of SO₂ concentrations in the scrubber.

During comparisons of simulator data with actual plant measurements, the flow and temperature profiles have verified our design parameters. Compared to traditional scrubbers, the result is a scrubber that is substantially smaller than conventional designs and features adaptable scrubber inlet and outlet geometry, as well as optimum layout of the spray nozzles and spray banks. This results in a uniform SO₂ profile in combination with the highest possible gas velocity in the scrubber – removing the most pollutants while utilizing the least power.

The scrubber also benefits from use of the latest materials and construction methods. Fiber reinforced plastic (FRP) absorbers and reinforced concrete absorbers with polypropylene linings are used in addition to the proven stainless steel and alloy absorbers as well as carbon steel absorbers with a variety of inner linings.
FGDplus

FGDplus is the optimized mass transfer upgrade for improved removal of SOx, dust, and aerosol. The drivers for process development in the field of flue gas cleaning technologies are no longer limited to more stringent, country-specific emission limits.

Meanwhile, there are other drivers, such as optimization of the separating efficiency in order to improve input of energy and resources. Another determining factor is the need to minimize the maintenance effort over the entire lifecycle of a flue gas desulphurization plant (FGD plant).

A new type of FGD technology based on the proven ANDRITZ limestone wash technology meets these new requirements. The patented FGDplus technology from ANDRITZ is based on an optimized “tracked mass transfer” inside the scrubber. With this system, an optimized combination of different absorption regimes leads to improved SOx, dust, and aerosol removal, which helps to improve the efficiency of any installed system.

Especially in high sulphur applications, these advantages are outstanding. Existing open spray tower scrubbers can be retrofitted easily to a new level of performance with this innovation, where the design will be optimized to meet the requirements on site. Influence on the existing design of the scrubber sump and the recirculation system is minor.

Challenging implementation time and special maintenance requirements will also favor the FGDplus system. A very robust and reliable FGD system was introduced with the FGDplus design. Based on long term investigations on lab and pilot scale, but especially with an industrial size pilot plant at a lignite-fired power plant in Germany, a new and innovative design was developed. The first applications and long-term experience in Germany and Asia confirm these findings and show a clear advantage over comparable designs on the market.

KEY FEATURES

- Optimized combination of favorable mass transfer regimes from inlet to outlet of absorber
- Easy to implement and update existing systems
- Short implementation time
- Robust design, absolutely blocking resistant
- Minimized operation and maintenance costs
- Designed for optimized removal of SOx, dust, and aerosol
Seawater FGD Desulphurization (SWFGD)

Seawater FGD is the best process with low operating and maintenance costs for use in coastal regions. ANDRITZ has developed the seawater FGD process by taking full advantage of the cooling water circuit downstream of the condenser of power plants in coastal areas.

IDEAL SOLUTION FOR COASTAL PLANT

ANDRITZ’s seawater FGD system is able to work without additional absorbent, and there are no by-products or waste created that need further treatment or disposal. Raw flue gas enters the scrubber and is cleaned in counter-current by seawater. The principle applied here is similar to the limestone process.

ANDRITZ offers an FGD scrubber based on the well proven open spray tower technology, combined with an FGDplus system. In addition, ANDRITZ also has experience with a packed tower design for seawater FGD systems. These systems are beneficial in optimizing the plant’s footprint and efficiency at high SO2 inlet concentrations.

WISE PRINCIPLE

The principle of our process is to make use of the natural alkalinity of seawater instead of using limestone solution to absorb acidic substances in the flue gas. The SO2 is first converted into sulphite. Then the sulphite is oxidated to form sulphate in the CFD-optimized aeration basin in order to maintain the pH, raise the DO (dissolved oxygen), and reduce the COD (Chemical Oxygen Demand). In the meantime, CO2 formed by the neutralization reaction is stripped by aeration membranes, and the pH value is increased consequently to meet legal requirements.

FLEXIBLE ARRANGEMENT

ANDRITZ is able to provide customized seawater FGD design and planning to suit the general power plant arrangement.
KEY FEATURES

• Outstanding for various fuels (lignite, hard coal, oil, and biomass)
• Up to 99% SO₂ removal
• No by-products
• Seawater as absorbent
• Open spray tower technology and packed tower design
• Low operating and maintenance
• High availability
• Options for materials of construction (high-alloy carbon steel with rubber lining, concrete with PP-lining, glass fiber reinforced plastics)
Turbo-CDS – Multi-pollutant control for utility power plants

ANDRITZ Turbo-CDS technology is the ideal solution for flue gas cleaning downstream of boilers fired with fossil fuels and other energy sources. It is an optimum one-step solution that has demonstrated not only high efficiency in removal of SOx and particulate, but also of HCl, HF, heavy metals like mercury, and other hazardous pollutants.

PROCESS

ANDRITZ’s Turbo-CDS system based on the well proven circulating fluidized bed (CFB) technology. It has shown excellent performance as a multi-pollutant control system in just one step. The flue gas flows through a cylindrical apparatus (CFB scrubber). The scrubber inlet uses multiple Venturi nozzles to increase gas velocity in order to support the fluidized bed. The bed material in the fluidized bed consists of unreacted lime, which is injected as a dry powder, reaction by-products, and fly ash. These materials are recirculated between the scrubber and the connected filter. In addition, process water is injected separately into the scrubber in order to enhance the desulphurization capacity of the process. Waste water from other processes can be used as process water, which is beneficial if waste water disposal is desired or if fresh water availability is limited on site. To collect particulate matter exiting the scrubber, either a fabric filter or an electrostatic precipitator may be used. The separated material is recirculated back into the scrubber by means of fluidized “air slide” conveyors. This recirculation system also regulates disposal of the by-product, which is a dry powder that can be landfilled or used beneficially as structural fill or in agricultural applications. Other equipment has also been optimized and designed especially for the ANDRITZ Turbo-CDS. The lime hydrator, for example, can be made an integrated part of the overall ANDRITZ technology so that pebble (or “burnt”) lime (CaO) can be used as the reagent, which is less expensive than using hydrated lime.

ADVANTAGES

ANDRITZ Turbo-CDS has been optimized for a minimum footprint requirement and is, therefore, an excellent solution for retrofits where space for the necessary plant is limited. With this system, no waste water is generated. Also the short implementation time, and the low investment and maintenance costs are clear advantages over comparable systems. The ANDRITZ Turbo-CDS has demonstrated its high availability in multiple applications around the world.

KEY FEATURES

- Focus on optimized SOx and dust removal (> 99%) – high reliability and flexibility
- Up to 99% SO2 removal
- Multi-pollutant control in one step, suitable for an expanded set of pollutants newly regulated in the US, the EU, and China
- CFD modelling used as an engineering tool – optimization of fluid dynamics
- In-house lime hydration design, optimized for ANDRITZ Turbo-CDS
Dry flue gas cleaning systems
Effective and compact – in one step

ANDRITZ dry flue gas cleaning systems meet the requirements for complying with the world’s strictest emissions legislation, the desire for low consumption of additives, the need for minimal residues, and the installation simplicity of a compact design.

Activated carbon can be used to achieve excellent removal of mercury, heavy metals, and dioxin/furan. As a result of advanced process management in terms of operating temperature, solids recirculation, and the dosage of additives, material consumption and generation of waste are kept to a minimum. The by-product of the process is a dry, powdery residue, which – depending on its composition – can be landfilled or used as a filler (e.g. road construction).

LOW INVESTMENT AND MAINTENANCE COST
ANDRITZ CDS systems are noteworthy for their compact designs. This allows for easier installation in a plant. Fluidized bed technology does not use rotating or wear parts, reducing the initial investment cost and the ongoing maintenance costs. Due to the simplicity of the design of the system components, very high levels of availability are achieved.

DRY SORBENT INJECTION (DSI)
In certain cases, especially for smaller plants, dry sorbent injection is used for removal of SOx and/or HCl, and even as a multi-pollutant control system. DSI has been optimized for a minimum footprint requirement and is, therefore, an excellent solution for retrofits where space is limited and plant upgrades are necessary. Hydrated lime neutralizes the acid components in the flue gas, whereas activated carbon injection can be used for heavy metal and dioxin/furan removal. A downstream bag filter is usually used for particulate removal, where dust and by-products are collected.
SODIUM BICARBONATE
The sodium bicarbonate process is used wherever waste production must be kept to a minimum. Due to the very high reactivity of sodium bicarbonate, only a small amount of sorbent is required. The process is independent as long as the temperature is high enough. This technology is also compatible with low temperature SCR, where no reheating is required.

TURBOSORP
Similar to the Turbo-CDS technology, the TurboSorp process consists of a CFB scrubber connected to a bag filter, where the product is circulated multiple times before it is released from the process. The TurboSorp process is designed to optimize the footprint and keep the installation time to a minimum. Due to product recirculation and water injection, the sorbent consumption is minimized.

KEY FEATURES
- Proven technology know-how with excellent references
- Dry sorbent technologies optimized for any onsite conditions, with a focus on multi-pollutant control solutions:
 - SOx, HCl, HF removal
 - Dust and particulate matter
 - Heavy metal including mercury, organic, and other pollutants like dioxins/furans
- Low investment costs
- Low maintenance, high availability
- Waste water free
PULSE JET FABRIC FILTERS (PJFF)
These fabric filters treat approximately 54 million m3/h (32 million ACFM) of flue gas, primarily at coal-fired boiler power plants (over 7,000 MW capacity), but also including waste incinerators, biomass, and other industrial processes.

ANDRITZ Pulse Jet Fabric Filter technology has been developed through the design and installation of more than 80 fabric filter systems worldwide.

KEY FEATURES
- Modular fabric filter (PJFF) designs available up to 150 MW
- Structural designs up to 500 MW in a single fabric filter
- As many as 1,800 bags per compartment
- ASME stamped pulse headers with multiple pulse valve designs
- High- and medium-pressure cleaning system designs
- Filter bags up to 10 meters (32.8 ft) in length
- Multiple filter bag and cage designs to suit any application
- Filter bag life in excess of five years
- Low pressure drop on stand-alone filters as well as downstream of CFB scrubbers
- Ideal solution for dry scrubber applications low sulphur, and PRB coals
- > 99.9% particulate removal, with demonstrated emissions less than 0.005 lb/MMBtu

ANDRITZ fabric filters are used to meet the most stringent particulate emissions requirements, but also for ash recirculation and collection, as well as the adsorption or absorption of partially gaseous pollutants in conjunction with the ANDRITZ CFB scrubbers or Dry Sorbent Injection (DSI) systems.

A Cleco, USA
B Hoppers for the pulse jet fabric filter – Big Stone – Otter Tail Power
WET ELECTROSTATIC PRECIPITATOR (WESP)
Extensive experience with wet-type electrostatic precipitators that are now operating worldwide. The WESP is used to collect sub-micron particulate and aerosols (PM10) from gas streams.

KEY FEATURES
• No emission of aerosol
• Dust removal down to PM2.5 and < 1 mg/m³ [stp]
• Reduction of heavy metals
• High velocity operation up to 4 m/s

Otter Tail Power, USA

DRY ELECTROSTATIC PRECIPITATORS
Dry electrostatic precipitators are offered as part of our Circulating Fluid Bed (CFB) scrubber system as well as on integrated air quality control system projects.

KEY FEATURES
• Dust removal down to 10 mg/m³ [stp, dry]
• Retrofit of existing ESP
DeNOx technology – Selective Catalytic Reduction (SCR)

ANDRITZ is one of Europe’s first companies using SCR technology successfully.

The company has numerous references in the DeNOx/SCR sector encompassing a variety of applications. Next to the use in power plants (high- and low-dust configuration), ANDRITZ has successfully installed SCR technologies in waste incineration and other industrial processes.

We design our systems based on specific operating parameters, catalyst geometry, flue gas compositions, and individual client preferences while ensuring optimum operation.

KEY FEATURES

- Aqueous ammonia direct injection
 - Latent heat of flue gas used to vaporize reagent
- Injection of pre-vaporized ammonia with optimized Ammonia Injection Grid (AIG)
 - Optimum NOX to ammonia distribution at minimum pressure drop
- Experience with wide fuel range
 - Most coal types (PRB, subbituminous, bituminous, and lignite)
 - Oil refinery wastes, lean gas, natural gas
 - MSW, industrial sludge, biofuels, sewage sludge
- Experience with various SCR configurations
 - High dust; Low dust and Tail-end
- SCR cleaning devices
 - Soot blowers, air cannons and sonic horns
The location of a DeNOx/SCR system within the flue gas cleaning process depends on the type of fuel. ANDRITZ tail-end configuration has proven to be highly effective in waste incineration and biomass-fired plants. The active centers of catalysts are only exposed to a minimum of catalyst agents with the benefit of an extended lifetime.

ANDRITZ has also a proven track record using its SCR technology in high-dust applications for power plants (coal, gas, oil). While most tail-end solutions require a reheating system, it can be avoided in ANDRITZ’s high-dust design which ultimately will save investment and operating costs for our customers. ANDRITZ’s extensive database on catalyst lives for a variety of fuels gives us the advantage to optimize each system individually with minimum catalyst volume.

ANDRITZ DENOX/SCR SYSTEMS ARE USED IN THE FOLLOWING PLANTS:

- Power plants
 - Gas-fired
 - Oil-fired
 - Coal-fired
 - Biomass-fired
- Waste incineration plants
 - Household waste
 - Hazardous waste
 - Hospital waste
- Industrial plants
 - Steel industry
 - Oil industry
 - Pulp & Paper industry

High-dust configuration at Hoosier Energy Merom Power Station, Units 1 & 2, Sullivan (IN), USA
Multi-stage / combined flue gas cleaning – Compliance with lowest emission values

ANDRITZ has the competence to combine and optimize systems for special requirements.

Current legislation regarding waste disposal and emission levels requires state-of-the-art flue gas cleaning systems. Selective pollutant removal is required, which not only aims to achieve minimum emissions in tandem with low operating costs, but also enables the recovery of recyclable by-products and a linked reduction in the volume of highly pollutant residues. ANDRITZ is the perfect partner for tailored solutions meeting both environmental and procedural requirements. We accompany our clients through the whole investment process, beginning with project development through plant commissioning, and then service support for the lifetime of the system.

Our flue gas cleaning systems are designed in modules. This helps us to configure and combine technologies in order to meet specific requirements:

- Dry flue gas cleaning
- DeNOx/SCR systems
- Multi-stage wet scrubbing
- Particulate control
- Spray absorption
- Activated carbon

KEY FEATURES

- Process/project development for complex, unique process requirements
- As an experienced EPC contractor, knowledge of the complex project set-up throughout the entire project lifetime
- Focus on holistic project setup – minimizing operation costs, recovery of recyclable by-products
- Process know-how, experience from tip to toe for multiple industry sectors

Recirculation pumps, Pfaffnau, Austria
SCR, SPRAY DRYER, FABRIC FILTER, TWO-STAGE WET SCRUBBER
Mainz, Germany
Mercury control – Holistic approach to minimize mercury emissions

Of the several processes for removing mercury from the emissions of coal-fired power stations, the most preferred are those that have synergy with existing air pollution control equipment.

Mercury is a potentially deadly neuro-toxin. Mercury emissions from coal-fired power stations are a major environmental concern due to the toxicity and persistence of mercury that accumulates in our waterways.

Stringent mercury emission limits in the USA and upcoming BAT and IED regulations in Europe present a significant challenge. To meet these limits, ANDRITZ follows a holistic approach by taking not only the various oxidation reactions in the flue gas pathable way, but also the processes within the wet FGD system and downward streams into account. We expect that this issue will become a main topic worldwide for coal-fired boilers within the next few years. If the conventional
氧化在气相中，基于气相条件和工艺设置，是不足以达到排放限值的，ANDRITZ提供一个成熟的钙溴氧化系统。向锅炉中加入钙溴化物是一种容易且有效的方法来氧化来自锅炉的大部分氧化汞。其他气相路径中的过程步骤对于任何在锅炉下游进一步氧化下游的氧化汞是至关重要的。例如，任何增强的氧化在现有的SCR单元中需要被考虑在任何过程开发中。最终，氧化汞将在FGD喷淋器中捕获。ANDRITZ考虑所有重要过程步骤和气相组成，以优化实施的汞排放控制系统。

ANDRITZ在湿法和干法FGD系统上有长期经验。一个设计良好的干式烟气清洁系统将有助于最小化额外添加剂的费用。ANDRITZ已引入并不断改进了TurboSorp循环干式脱硫系统。湿式FGD不仅是分离气流中酸性成分的非常有效的方法，它在去除氧化汞方面也具有高效率。然而，湿式喷淋器的化学组成中的不一致可以将已经捕获的汞重新排放回系统中。为了防止FGD过程中的任何重新排放，ANDRITZ特别关注在石灰浆中的溶解汞的结合和稳定化。例如，进行粉末活性炭（PAC）注入以抑制重新排放，主要的汞捕获阶段将是FGD副产品——石膏。这是不可接受的，有两个主要原因，如果工厂管理正在针对有益使用FGD产品。首先，它大大增加了石膏中的汞含量，可能使FGD产品作为干墙工业的资源无用。其次，石膏的白色度会恶化，因此可能对商业使用不吸引人。

与常规旋流器系统相比，这类特定结合的汞不能有效地从石膏中去除。因此，ANDRITZ提供了一种专利的旋流器设计，可以将含有汞的颗粒（例如PAC）从石膏中清楚分离，从而将FGD产品的汞含量降到最低。该系统易于实施，并为任何现有FGD装置的升级提供明显优势。为了提高汞转移到废水处理厂并防止其浓度在喷淋器中增加，ANDRITZ提供任何汞减排系统的升级，其中FGD系统内有一个明确的汞捕获阶段。ANDRITZ可以利用任何脱水技术的长期经验。因此，控制的汞捕获被创建。
Making your plant fit for upcoming, stringent emission limits

Increasingly stringent emission limits worldwide for dust, NOx, SOx, mercury, and other flue gas pollutants, but also further overall plant efficiency standards (guidelines) require individual solutions (solution approaches) for existing facilities.

In order to find the best suitable solution (for the individual frame conditions), ANDRITZ can draw from an extensive pool of knowhow and a variety of test and measurement facilities, as well as offering full support for modernization of the air pollution control systems of older power plants and industrial facilities. Together with our own measurement and laboratory team, ANDRITZ has gathered extensive know-how for all of the flue gas pollutants mentioned. Within the past few years, we have analyzed several existing facilities in order to pinpoint different pollution tracks on several different process parameters. After a first facility process check with our modernization specialists, we aim to gain a detailed insight into the whole process chain, from the boiler to the stack. In combination with our simulation models, developed and tested in-house, like our Computational Fluid Dynamics (CFD) model, we find the most suitable solution together with our clients. With the CFD model, we can provide local and/or time-resolved visualization of flow and transport processes in multi-phase processes. For example, pollutant concentrations in apparatus can be pinpointed locally and temporarily.

KEY FEATURES

• Increasingly stringent flue gas emission limits for dust (down to 5 mg/m³ [stp, dry]), NOx (< 75 mg/m³ [stp, dry]), SOx (< 35 mg/m³ [stp, dry]), mercury (< 3 µg/m³ [stp, dry]), and other pollutants
• We analyze specimens in our laboratory and our own measurement team conducts the measurements
• We develop and implement optimization concepts for your plant
• We identify the most cost-effective solution for your specific challenges with respect to both investment and operating expenses
• We take care of the planning and execution from project development to plant commissioning, to support during the warranty period
Exhaust gas cleaning – ANDRITZ SeaSOx wet and dry technology

Exhaust gas cleaning for shipping is a challenge that can be solved perfectly with the know-how ANDRITZ has gained by designing and optimizing hundreds of installations around the world.

Keeping in mind the demand for high availability, the simple but effective scrubber system is the ANDRITZ solution for efficient and reliable exhaust gas desulfurization on board ships. By identifying each client’s needs at an early stage, we can make a long-term contribution towards cleaner air and a clean environment. With offices in the USA, Europe, South America, and Asia, ANDRITZ is able to provide our well-proven solutions globally and has the dedicated personnel to meet all clients’ needs. A global service network is available for all of our products, so wherever you are – we are available to provide support to our clients.
Advanced SeaSOx\textsubscript{wet} scrubber

Designed on the basis of more than 35 years of experience in scrubber design and using the most highly developed CFD models to simulate and optimize flow distribution and SOx mass transfer, the scrubber offers some decisive benefits:

1. **DESIGN CONCEPT**
 Designed for the smallest footprint, inline funnel integration and run dry capabilities.

2. **MATERIAL SELECTION**
 The shell, internals and gas inlet are all made of alloys with high Cr, Ni and Mo content (SMO254 and ALLOY31) to perform under severe conditions:
 - Seawater/high chloride (wet mode)
 - Exhaust gases/high temperatures (dry mode)

3. **SQUARE DESIGN OPTION**
 ANDRITZ provides a square shell in order to maximize the internal volume required for the sulfur absorption process while minimizing the space demand and manufacturing costs.

4. **FGDPLUS LAYER**
 The patented FGDplus technology from ANDRITZ has proven its advantage over conventional mass transfer systems for power plants up to 600MW\textsubscript{el.}
 It ensures even distribution and turbulent mixing of the exhaust gases and the seawater stream.

5. **PREVENTION OF BACK-FLOW**
 Beside class requirements, the patented ANDRITZ inlet was developed to minimize the pressure drop while providing an effective prevention of back-flow to protect the exhaust gas ducts.

6. **OPEN-SPRAY SCRUBBING TOWERS**
 Open spray towers feature a slim design and the highest operational safety. As there are no obstacles in the absorber, there is no risk of clogging, blockages, or melting of internal parts.

7. **BOTTOM OR SIDE INLET DUCT**
 Inlet connections are available either at the side or at the bottom.
ANDRITZ SeaSOx\textsubscript{wet}

Process description

OPEN LOOP MODE

In open loop mode, seawater is used as a washing medium to clean the exhaust gas. This simple process makes use of the natural alkalinity of the seawater in chemical absorption of the SOx. For this reason, the washing medium is pumped from sea chests to the absorber, where the absorption process takes place by means of spray scrubbing. The treated exhaust gas can then be released to the environment, and the effluent is also discharged. Both the exhaust gas and the effluent have to meet several critical, environmental constraints, which are validated by continuous emission monitoring.
CLOSED LOOP MODE
If the natural alkalinity is too low or discharging of effluent is not allowed, SOx scrubbing is performed in closed loop mode. In this mode, the washing medium is recycled, and a neutralizing agent (50% wt. NaOH, Na₂CO₃) is added in metered doses to obtain a certain absorption capacity. In order to control the absorption temperature and maintain the water balance, an inline heat exchanger is provided on request to cool the washing medium down. Consequently, the effluent has to be cleaned periodically depending on the engine load, the ship’s route, and its fuel specification. For this application, a washing water treatment unit is installed to separate the particles and salts from the washing medium, in accordance with the MARPOL Convention, before it is discharged into the sea. The sludge generated is collected in a separate tank, while the treated washing water is either stored in the holding tank or discharged into the sea, depending on local discharging restrictions.

HYBRID MODE
A combination of open and closed loop operations is called hybrid mode. In hybrid mode, it is possible to switch between these two processes depending on the predominant basic conditions (seawater alkalinity, discharge restrictions, etc.). This option provides high flexibility and enables customers to choose the best process, both economically and technically.

ADVANTAGES
• Simple and robust design suitable for inline and by-pass installation.
• Substantial noise reduction: The silencer can be removed if operated in the inline mode.
• Exhaust gas can pass through safely, even when the absorber pumps are not operating.
• Highest removal efficiencies with lowest operating costs, combining ANDRITZ proprietary FGDplus technology and optimized spray bank design.
• Multiple inlets possible.
• Smallest footprint due to rectangular design.
ANDRITZ SeaSOx_{dry}
Process description

DRY DESULPHURIZATION PROCESS
In the dry desulphurization process, sodium bicarbonate (NaHCO₃) is injected as a dry powder into the existing exhaust pipe. Due to the prevailing high temperature and adequate residence time, the NaHCO₃ particle is activated, which increases the reactive surface by many times. This activation is necessary for the NaHCO₃ to react with the sulfur components. Such a process requires a temperature of at least 150 °C. If the temperature of the exhaust gas stream from the engines is higher than 250 °C, a quench is connected upstream, which brings the exhaust gas to the desired temperature by means of evaporative cooling. At the downstream dust filter, on which other particles
(e.g. dust, soot ...) are also deposited in addition to the sodium bicarbonate, a filter cake builds up on the filter cloth, and this is where the decisive chemical reaction takes place. SO₂ reacts with NaHCO₃ to form Na₂SO₄, which is also present as a powder. After a defined period of time or due to the maximum allowed pressure loss, the dust filter is cleaned by means of a pulse-jet process. During operation, a short stream of air is introduced at high pressure into the bag filter, whereby the filter cake peels off and drops into a collecting funnel. From there, the product is carried off by compressed air and stored in a silo.

ADVANTAGES

- Low CAPEX (low-cost equipment, little installation work necessary)
- SO₂ removal to leave only 0.1 or 0.5% S possible
- Low pressure drop (< 15 mbar)
- No waste water
- No plume due to hot process (tail-end SCR possible)
- No harmful sorbents (NaHCO₃ is also known as baking soda)
- Additional particulate removal > 99%
- No pumps, waste water treatment equipment, heat exchangers, filters, or tanks have to be installed in the engine room
- Multiple inlets possible
Selected references

NEURATH F/G, GERMANY
Wet limestone FGD
Customer: RWE Power
Capacity: 2 × 1,100 MWel,
2 × 4,850,000 m³/h [stp, wet]
Fuel: Lignite
Start-up: 2011

RYBNIK, POLAND
Wet limestone FGD
Customer: Elektrownia Rybnik
Capacity: 4 × 200 MWel,
2 × 1,320,000 m³/h [stp, wet]
Fuel: Hard coal
Start-up: 2008

KARLSRUHE, GERMANY
Wet limestone FGD
Customer: EnBW
Capacity: 910 MWel,
2,500,000 m³/h [stp, wet]
Fuel: Hard coal
Start-up: 2011

LINZ 04-05, AUSTRIA
SCR DeNOx
Customer: VA STAHL
Capacity: 2 × 150,000 m³/h [stp, wet]
Fuel: Blast furnace gas,
coke oven gas
Start-up: 2004–2005

SANDOW, TEXAS COUNTY, USA
CFB scrubber, PJFF
Customer: Bechtel Corporation / Luminant
Capacity: 2 × 315 MW,
2 × 1,118,200 m³/h [stp, wet]
Sorbent: Hydrated lime
Start-up: 2008

TA LAUTA, GERMANY
Multi-Stage FGC plant
Customer: Ravon Lauta
Capacity: 2 × 75,000 m³/h
Fuel: Domestic waste
Start-up: 2002

YUNUS EMRE, TURKEY
Turbo–CDS and ESP
Customer: Vitkovice, Adularya
Capacity: 2 × 145 MWel,
2 × 610,000 m³/h [stp, wet]
Fuel: Lignite
Start-up: 2013

CENTRAL POWER PLANT #6
Venezuela, Seawater FGD
Customer: Beijing Boqi Electric Power
Sci-tech Co., Ltd
Capacity: 1 × 600 MW,
1 × 1,973,209 Nm³/h
Sorbent: Seawater
Start-up: 2014

TURCENI, ROMANIA
Wet limestone FGD
Customer: S.C. Complexul Energetic Turceni S.A.
Capacity: 4 × 330 MWel,
4 × 1,723,000 m³/h [stp, wet]
Fuel: Lignite
Start-up: 2011
Glückstadt, Germany

Dry FGC (TurboSorp)
Customer: HKWG Glücksstadt
Capacity: 160,000 m³/h [stp, wet]
Fuel: RDF, sludge, coal
Start-up: 2009

Virginia City, VA, USA

Pulse Jet Fabric Filter (PJFF)
Customer: New Page
Capacity: 1 × 179,900 and 1 × 349,800 m³/h [stp, wet]
Fuel: Eastern bituminous coal
Start-up: 2007

Tusimice II, Czech Republic

Wet limestone FGD
Customer: CEZ
Capacity: 4 × 200 MWel, 2 × 1,780,000 m³/h [stp, wet]
Fuel: Lignite
Start-up: 2009/2010

Haikou, China

Turbo-CDS WtE power plant
Customer: CPI New Energy Holding
Capacity: 2 × 600 t/d, 2 × 108,700 Nm³/h
Sorbent: Ca(OH)₂
Start-up: 2012

Luke, MD, USA

Pulse Jet Fabric Filter (PJFF)
Customer: New Page
Capacity: 2 × 335 MWel, 2 × 1,046,000 acfm
Fuel: Waste coal, biomass
Start-up: 2011

Mellach, Austria

Turbo-CDS and SCR plant
Customer: Empresa Electrica Guacolda
Capacity: 3 × 140 MW, 3 × 560,000 m³/h (std, wet)
Fuel: Coal
Start-up: 2015–2016

Moordiijk, Netherlands

TurboSorp PJFF, ESP and SCR/DeNOx
Customer: BMC Moordiijk
Capacity: 250,000 m³/h [stp, wet]
Fuel: Poultry litter
Start-up: 2008

Lünen, Germany

Wet limestone FGD
Customer: Trianel
Capacity: 1 × 800 MWel, 1,965,000 m³/h [stp, wet]
Fuel: Hard coal
Start-up: 2012

Virginia City, VA, USA

CFB scrubbers, PJFF and ESP
Customer: Dominion Energy
Capacity: 2 × 335 MWel, 2 × 1,046,000 acfm
Fuel: Natural gas
Start-up: 2011

HaiKou, China

Turbo-CDS WtE power plant
Customer: CPI New Energy Holding
Capacity: 2 × 600 t/d, 2 × 108,700 Nm³/h
Sorbent: Ca(OH)₂
Start-up: 2012

Tusimice II, Czech Republic

Wet limestone FGD
Customer: CEZ
Capacity: 4 × 200 MWel, 2 × 1,780,000 m³/h [stp, wet]
Fuel: Lignite
Start-up: 2009/2010

Glückstadt, Germany

Dry FGC (TurboSorp)
Customer: HKWG Glückstadt
Capacity: 160,000 m³/h [stp, wet]
Fuel: RDF, sludge, coal
Start-up: 2009

Luke, MD, USA

Pulse Jet Fabric Filter (PJFF)
Customer: New Page
Capacity: 1 × 179,900 and 1 × 349,800 m³/h [stp, wet]
Fuel: Eastern bituminous coal
Start-up: 2007

Mellach, Austria

SCR DeNOx
Customer: Siemens, Verbund ATP
Capacity: 2 × 400 MWel, 2 × 2,100,000 m³/h [stp, wet]
Fuel: Natural gas
Start-up: 2011
CLEAN AIR FOR A BETTER TOMORROW

ANDRITZ is a leading global supplier of innovative air pollution control technologies. Our product range combines 130 years experience with the specific knowledge gained from over 200 installations around the world. ANDRITZ offers high-end technologies and is a partner you can rely on. Contact us all over the world.

EUROPE*)
ANDRITZ AG
p: +43 316 501 505
apc-AT@andritz.com

EUROPE NORDICS
ANDRITZ AB
p: +46 705 187 710
apc-SE@andritz.com

USA
ANDRITZ Inc.
p: +1 770 640 2500
apc-USA@andritz.com

CHILE
ANDRITZ Chile Ltda.
p: +56 2 462 4605
apc-CL@andritz.com

BRAZIL
ANDRITZ Ltda.
p: +55 11 91132 2822-0
apc-BR@andritz.com

CHINA
ANDRITZ (China) Ltd.
p: +86 21 3122 2198
apc-CN@andritz.com

JAPAN
ANDRITZ KK
p: +81 78 330 5885
apc-JP@andritz.com

INDIA
ANDRITZ India Private Limited
p: +91 44 4293 9393
apc-IN@andritz.com

*Headquarter and all other European countries

All data, information, statements, photographs and graphic illustrations in this leaflet are without any obligation and raise no liabilities to or form part of any sales contracts of ANDRITZ AG or any affiliates for equipment and/or systems referred to herein. © ANDRITZ AG 2019. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws. ANDRITZ AG, Stattegger Strasse 18, 8045 Graz, Austria. Due to legal requirements, we must inform you that ANDRITZ AG processes your data for the purposes informing you about the ANDRITZ GROUP and its activities. Find out more details about our data privacy declaration and your rights under the data protection legislation on our website: andritz.com/privacy. AirPollutionControl 01/07/2019 EN