

Contact: ANDRITZ Inc.

Division: Automation & Digitalization 13560 Morris Road, Suite 1250 Alpharetta, GA 30004 / US Phone: +1 770 640 2500

Fax: +1 770 640 2557

E-mail: simulation.support@andritz.com

andritz.com

© 2024 ANDRITZ Inc. All rights reserved. You may not copy this document in any form without the written permission of ANDRITZ Inc.

IDEAS LIBRARIES AND OBJECTS

IDEAS is an industry-leading process simulator for the global kraft pulp and paper, mineral processing, oil sands operations, potash operations, and power industry. It offers powerful steady-state and dynamic modeling capabilities as a complete package for all your simulation needs.

Products	Description
IDEAS Bronze	Steady-State Package
IDEAS Silver	Steady-State + Tanks and Control Dynamics
IDEAS Gold	Fully Dynamic Package
Industry-specific Add-on Pulp Mill-B Mineral Processing-B Power- B	 Modeling of Pulp and Paper Process Modeling of Mineral Processing Plants Modeling of Coal & Gas-fired Power Plants

The above-mentioned base packages have the following libraries as a part of each product.

Library	Bronze	Silver	Gold
Dynamic Data Exchange	✓	√	✓
Executives	✓	✓	✓
Financial	✓	✓	✓
Logic	✓	✓	✓
Macro Primitives	✓	✓	✓
Macro Unit Ops	✓	✓	✓
Material Properties	✓	✓	✓
Math Tools	✓	✓	✓
Optimization	✓	✓	✓
Plotters	✓	✓	✓
Tools	✓	✓	✓
Tools_Utilities	√	√	✓
Transmitters	✓	✓	✓
Analog Controls	×	✓	✓
Identification & Tune	×	√	✓

Library	Bronze	Silver	Gold
PLC	×	✓	✓
Tanks Dynamic	×	✓	✓
Transfer Function	×	✓	✓
Heat Exchangers	×	×	✓
Nodes	×	×	✓
Pipes & Valves	×	×	✓
Pumps & Compressors	×	×	√

BASE PRODUCTS

The following pages list the objects that are included in all the libraries of the IDEAS **Bronze**, **Silver**, and **Gold** base products:

Analog Controls	Stream Number	DCS - Digital Output
Calibrator	Stream Number Center	DCS - Digital Output (L)
Controller On/Off		DCS - Indicator
Controller PID	Financial	DCS - Start PB
Electric Actuator	Cost Splitter	DCS - Start/Stop Switch
Lead/Lag Filter	Energy Cost	DCS - Stop PB
First Order Low Pass Filter	Energy Cost Accumulator	DCS - User-Defined PB
Pneumatic Positioner	Manpower Cost	Equal
Ramper	Manpower Cost Accumulator	Field - Auto/Manual Switch
Rate	Material Cost	Field - Digital Input
Scalar Delay	Material Cost Accumulator	Field - Digital Input (L)
Smith Predictor	Operating Cost Delta	Field - Digital Output
Stiction Predictor	System Cost Accumulator	Field - Digital Output (L)
Stiction/Backlash	Transmitter	Field - Start PB
Transport Delay		Field - Start/Stop Switch
	Heat Exchangers	Field - Stop PB
Dynamic Data Exchange	HX Fitter	Field - User-Defined PB
DDE Variable Connector	HeatX-Condensing Left	First Out
DDECalc	HeatX-Condensing Right	Greater Than
DDECommand	HeatX-Shell&Tube	High-Low Limit
DDEDialog	Heater Co-CurrLeft	Less Than
DDEMultiConnector	Heater Co-CurrRight	Not
DDEReceive	Heater Counter-CurrLeft	Or - 2 Inputs
DDEScalar	Heater Counter-CurrRight	Or - 3 Inputs
DDESend	Heater/Boiling	Or - 4 Inputs
Dialog Box Data Exporter	Heater/Condensing	Or - 5 Inputs
Scenario Importer	Pipe-w/HExch(M)	Or - 6 Inputs
Stream Exporter	Pipe-w/Heat Exchange	Set/Reset
		Timer - Off Delay
Executives	Logic	Timer - On Delay
Discrete/Cont. Executive	And - 2 Inputs	Timer - Retentive
Display Errors	And - 3 Inputs	Timer - Timing
Display Manager	And - 4 Inputs	Transitional - Negative
Global Unit Selector	And - 5 Inputs	Transitional - Positive
SOLVER-FLUID FLOW	And - 6 Inputs	
Snapshot	Counter Up/Down	Macro Primitives
Stream Color	DCS - Auto/Manual Switch	Flow Max

Flow Set	MP Assembler	Restriction Orifice
Header	MP Converter++	Valve-Control
Mixer	MPArray_Test	Valve-Control/Shutoff
Monitor	Material Properties	Valve-Isolating
Output Doubler	PSD Assign	
Phase Separator	PSD Data	PLC
Pressure Drop	PSD Shifter	ADD-PLC
Pressure Set	Sink	AFI
Separator	Stream Source	AND
Separator2		CTD
Splitter	Nodes	CTU
Stream M x N	Node N/M	DIV
Stream Selector-1x2	Node Separator	EQU
Stream Selector-2x1	Node-1 in-1 out	End
Supervisor	Node-1 in-2 out	GEQ
·	Node-1 in-3 out	GRT
Macro Unit Ops	Node-2 in-1 out	Join L
Condenser	Node-2 in-2 out	Join T
Conveyor-Constant Speed	Node-2 in-3 out	Join TT
Cooling Tower	Node-3 in-1 out	LEQ
Distillation Tray	Node-3 in-2 out	LES
Distributor	Node-3 in-3 out	MOV
Equilibrium Reactor	Node-MP Converter	MUL
Evaporator	Phase Mixer	NEG
Flash		NEQ
Fluid Mover	Optimization	NOT
HX Unit	Advanced Optimizer	ONS
HX Unit w_Zones	Case Study Manager	OR
Heater	Evolutionary Optimizer	OTE
Reactor RX	Grid Search	OTL
Stream Delay Time	Simulated Annealing	OTU
Tank		PLC Controller
Turbine	Pipes & Valves	PLC Input
	Duct with Damper	PLC Output
Material Properties	PRV	PowerRail
Breakage Curve Fitter	PVRV	Pushbutton - N.C.
Bulk Density Assign	Pipe	Pushbutton - N.O.
Component Property	Pipe-Delay	RES
Element Selector150	Pipe-Desuperheater	RTO
Froth Density Assign	Pipe-Wall Temp	SQR
MP 1 Variable Curve Fitter	Pipe-w/Shutoff	SUB
MP 2 Variable Curve Fitter	Pipe-wReactions	Split L

_	T. 1. 110100
	Tools_Utilities
	Block Opener
	Convergence-Transmitter
	Converger-LR
	Converger-UL
	Count Blocks
Data Collection	DBD Exchange
Divide_c	Data Tracker++
Equation++	Dialog Box Saver
_Equation_c	Dialog Variable Transmitter
ExcelConnect	Diameter Set
External Code Interface	Event Log
Global Mass Balance	F&D Reader
H-M&E Balance	Find Global BN
Input Data_c	General Curve Fitter
Input Function_c	Graph Digitizer
Input Select	H Animate Level
Input Validation Block	H Animate Number
Integrator	H Animate Status
InterModel Communicator	H Lock
Intersection Finder	HBlock Help
Max Value	Hierarchy Opener
	LED Indicator
	Level Animation
	Max/Min Alarm
	Model Compare
	Model Protection
	Navigator
	Stream Number Corrector
	Text Jump
	User Message
	Worksheet Breakpoint
	Worksheet Inspector
-	Transmitters
	Capacitance Probe
	Display M&M Grid
	Display M&M Grid Legend
	Display Master Display Master
Subtract_c	Display Naster Display Stream
	Equation++ Equation_c ExcelConnect External Code Interface Global Mass Balance H-M&E Balance Input Data_c Input Function_c Input Select Input Validation Block Integrator InterModel Communicator Intersection Finder Max Value Max2_c Min Value Moving Average Multiple Scalars 10 Multiple Scalars 10 Multiply_c Noise Generator Output Select PSD Balance Checker Scalar Reader Scalars to Array Selector Sequencer Sequencer Input Set Pop-up Menu Slider Stream Initializer

Display-S S&P
Flowsheet Table
Stream Analyzer
Stream Reference
Transmitter-Alkali
Transmitter-Approx pH
Transmitter-
_Approx_Conductivity
Transmitter-Component
Transmitter-Component Flow
Transmitter-Cp

Transmitter-DP
Transmitter-Density
Transmitter-Digester Property
Transmitter-Element Content
Transmitter-Element Flow
Transmitter-Enthalpy
Transmitter-Entropy
Transmitter-Flow
Transmitter-Humidity
Transmitter-Kappa
Transmitter-PSD

INDUSTRY-SPECIFIC ADD-ON PRODUCTS

Pulp Mill - B Library	Modeling of Pulp and Paper Process
Bleach Tower	The Bleach Tower Steady State object is used to simulate the steady-state operation of a
Steady State	variety of pulp mill bleach tower stages.
Causticizer	The Causticizer object is a Macro object that simulates the operation of a causticizing tank in the chemical recovery area of a pulp mill.
Charge	The Charge object is a Macro utility object that can be used to charge the required amount of cooking chemicals (from white liquor and dilution water from black liquor streams) to achieve the desired pulping conditions in the feed stream
Clarifier	The Clarifier object is a Macro object that simulates the operation of a liquid clarifier, such as a green liquor clarifier or a white liquor clarifier, in a pulp mill.
Cyclone - 1 stage	The macro Cyclone objects are to simulate the operation of cyclone pulp cleaners.
Cyclone - 2 stage	The Cyclone - 2 Stage object is a combination of two (2) Cyclone - 1 Stage objects. In this object, the Accept stream from the second stage is recycled and mixed into the feed of the first stage.
Cyclone -	The Reverse Cyclone object can be used to simulate reverse cyclones where lightweight
Reverse	contaminants (such as plastics) are removed from the top of the cyclone.
Digester -	The Digester - Batch Macro object can be used to do calculations and stream component
Batch	conversions from wood components to dissolved solids in liquor.
Gas Scrubber	The Gas Scrubber object is a Macro object that selectively scrubs a few components of an
	incoming gas stream with a liquid stream. Stage efficiencies for each component being scrubbed,
	and the total effective number of stages, are specified by the user.
Lime Kiln	The Lime Kiln object is a Macro object that can be used to simulate the operation of a lime kiln in
	the chemical recovery area. The lime kiln is usually used in a pulp mill to convert CaCO3 to CaO
	by incineration. The resulting re-burnt lime (CaO) can be used as the input lime for slaking. The
	reaction in a lime kiln is accomplished by burning large quantities of fuel and air along with lime
	mud from the mud filter.
Mud Filter	The Mud Filter object is a Macro object that is used to simulate the operation of a drum mud filter in the chemical recovery area of a pulp mill.
Nelson	The Nelson Efficiencies object is a Macro object that can be used to set the separation
Efficiencies	efficiency parameters for Separators. This object will calculate the separation efficiencies for each solid component in the stream using user-supplied Q values and the Nelson screening equations.
Precipitator	The Precipitator object is a Macro object that can be used to simulate the operation of an
·	electrostatic precipitator in the chemical recovery area. The collection efficiency can either be
	specified through the dialog box or the scalar connector Eff. The Eff connector value overrides the dialog box value.
Press M	The Press M object is a Macro object that can be used to simulate a process where a stream,
	containing a mixture of solids and liquids, is thickened by removing part of the liquid.
Recovery	The Recovery Boiler object is a Macro object that can be used to simulate the operation of a
Boiler	recovery boiler. Recovery boilers are used in pulp mills to recover spent cooking chemicals and

Pulp Mill - B Library	Modeling of Pulp and Paper Process
	energy from the organics present in the black liquor.
Refiner	The Refiner object is a Macro object that simulates the operation of a disk refiner in the paper machine area. With minor modification of some default parameters, it can also be used to simulate the operation of valley beaters.
Screen – 1 Stage	The Screen – 1 Stage object can be used to simulate the operation of pulp screens cleaners. The separation efficiencies for the solid components are calculated based on Nelson efficiency parameters.
Screen – 2 Stage	The Screen - 2 Stage object is a combination of two Screen - 1 Stage objects. In this object, the Accepts streams from the second stage are recycled and mixed into the feed of the first stage.
Slaker	The Slaker object is a Macro object that can be used to simulate the operation of a slaker tank in the chemical recovery area of a pulp mill. The object accepts green liquor and lime inputs.
Smelt Diss. Tank	The Smelt Diss. Tank object is a Macro object that simulates the operation of a smelt-dissolving tank in the chemical recovery area.
Steady-State Digester	The Steady-State Digester object is a Macro object to model the continuous cooking process. It represents the sections of the digester vessel, including the top separation, impregnation, cooking, recirculation, extraction and washing zones. Each section has multiple chip and liquor zones to simulate the cooking process, with user-defined reaction, heat, and mass transfer rates.
Washer	The Washer object is a Macro object that can be used to simulate the operation of a drum washer.
Washer – Split	The Washer – Split 2 object is a Macro object that can be used to simulate the operation of a drum washer with 2 split inlet.
Washer Calc	The Washer Calc object is a Macro object that can be used to calculate performance indicators and soda loss for a series of washers in any configuration.

Paper Machine-B	Modeling of Pulp and Paper Process
Calender BR	The Calender object affects the sheet apparent density and E-modulus (MD and CD) through empirical processing equations that are entered directly into the object's script.
Couch Roll BR	The Couch Roll object predicts the mat consistency profile along the circumference of the couch roll as a function of the applied vacuum, inlet mat consistency, wire speed, and the fiber retention
Foil/Vacuum Foil BR	The Foil/Vacuum Foil BR object represents the vacuum box section of a paper machine. The objective is to dewater the mat by the application of a vacuum across the mat. The dewatering rate is calculated using the Kozeny-Carman equation, which represents laminar flow through a bed of solids.
Headbox BR	The function of the Headbox BR is to deliver a thin jet of dilute stock (<1%) onto the wire while also controlling its pressure, consistency, and temperature. In many modern headboxes; dilution water is added directly to the stock under dry end basis weight control.

Paper Machine-B	Modeling of Pulp and Paper Process
Press BR	The Press BR object is based on second-order, empirical equations for dewatering, apparent density and E-modulus.
Refiner BR	The Refiner BR is a macro object that simulates the operation of a disk or conical refiner in the paper machine area. This object computes an expected reduction in freeness, Canadian Standard and Shopper-Riegler, and the expected generation of fines.
Shower BR-Left	The Shower BR-Left (H-block) object represents the shower section of a paper machine. The objective of the shower is to remove the fibers stuck to the wire.
Shower BR- Right	The Shower BR-Right (H-block) object represents the shower section of a paper machine. The objective of the shower is to remove the fibers stuck to the wire.
Steam Dryer BR	The Steam Dryer BR simulates the operation of one set of paper m/c dryers. The heat transfer to the paper and the drying of paper is calculated. The build-up of heat in the dryer cans is also calculated.
Transmitter- Basis Weight	The Transmitter - Basis Weight object displays the basis weight of a given stream.
Twin Wire Former BR	The Twin Wire Former BR represents the twin wire former section of a paper machine. The objective of the twin wire former object is to represent mat formation through the dewatering of the incoming slurry from the head box.
Vacuum Box BR	The Vacuum Box BR simulates the working of the vacuum box section of a paper machine. The objective of the vacuum box is to dewater the mat by the application of a vacuum across the mat.
Vacuum Box w/Hood BR	The Vacuum Box w/Hood BR object represents the vacuum box with steam hood section of a paper machine. The objective of the vacuum box is to dewater the mat by the application of a vacuum across the mat.

Mineral Processing -	Modeling of Mining Process
B Library	
AG/SAG Mill	The AG/SAG Mill object is used to simulate the steady-state operation of autogenous or semi-autogenous grinding equipment in mineral processing plants.
Ball Mill	The Ball Mill object is used to simulate the steady-state operation of the ball mill grinding equipment in mineral processing plants.
Belt Filter	The Belt Filter H-Block has been modeled assuming a five-stage process: a formation zone, 3 wash zones, and a drying zone. Each zone is modeled using the Filter object. Display and input items have been cloned out of the respective stages for an easy overview. Users are free to manipulate the hierarchal object or the display to suit their individual needs.
Carbon In Column/Leach/Pulp	Carbon in Column/Leach/Pulp object models the adsorption of a metal-bearing ion on the ion-exchange site of an activated charcoal surface when it comes into physical contact with metal-laden aqueous solution.
Centrifuge	The Centrifuge object represents a dewatering process where the liquid phase is separated from the solids to achieve the required solids concentrations in the cake and in the centrate.
CIP Calculations	The CIP Cal (Carbon in Column/Leach/Pulp Calculation) object is used to calculate the organic matter phase and aqueous phase separation efficiencies for the Carbon in Column/Leach/Pulp object based on the organic matter and aqueous flow, carbon loss in aqueous phase, and the moisture of the organic matter phase leaving the object.
Crusher	Crusher object models a basic comminution operation in which the particle size distribution of the feed stream is reduced while conserving mass.
Crystallizer	The Crystallizer object is used to simulate the precipitation of solids dissolved in the inlet stream's liquid phase. The object computes the temperature of the system and the compositions of the overhead vapor and product stream, which contains the precipitated solid and the remainder of the liquid phase.
Dissolver	In crystallization processes, there are operations where a sub-saturated solution will be in contact with soluble solids (crystals) and some of the crystals dissolve to create a saturated solution. These types of operations can be modeled using the Dissolver object.
	The Dissolver is a Macro type object, i.e., it does not have any volume. The object accepts the inlet flow containing solvent and soluble solids (crystals) and performs the solubility calculations based on the stream's composition and temperature.
Drier-MP	The Drier-MP object is used to calculate the flow rate of hot, dry gas required to reduce the moisture content in the object's feed stream to a predefined level.
Electrowinning	The Electrowinning object calculates the operating temperature and the metal production rate as well as the conversion of the chemical reaction and the power consumption. These metrics are computed using several user-supplied parameters which will be described in detail in the input parameters overview.

Mineral Processing -	Modeling of Mining Process
B Library	
EW-Calculations	The EW-Calculations object is used to calculate the reaction conversion and the electrical
	energy for the Electrowinning object based on the current density, current efficiency,
	number of cells, cell voltage, number of cathodes per cell, cathode side surface area, mole
	flow rate of the salt compound, coefficient of metal element in salt compound, and the
	number of electrons per mole of salt compound.
Feeders	The Feeders object represents a mechanical device that defines flow rates of solids in ore
	processing plants.
Filter	The Filter object represents the filtering and washing operations where an incoming slurry
	containing solids in an aqueous solution is separated into filtrate and cake (solids rich)
	streams. A wash solution is used to displace incoming liquor that may be present in the
	cake.
Flotation	The Flotation object calculates the slurry residence time and applies the first order
	kinetics formula to calculate the recoveries of individual stream components into the froth.
Flotation Column	The Flotation Column object performs identical functionality as the Flotation object in
	this library.
Flotation Kinetics	The Flotation Kinetics Fitter object is used to calculate Rmax and k coefficients for the
Fitter	flotation kinetics model used in the Flotation and Flotation Column objects. The object
	allows comparing experimental data with model predictions of the recoveries for different
	"k" values.
Gas Cleaner	The Gas Cleaner (Object Choices: ESP (Electrostatic Precipitator) or Gas Cyclone)
	objects represent the solids rejection from a gas stream.
Gas Scrubber	The Gas Scrubber object is used to model the removal of contaminants from a multi-
	component vapor stream using a liquid that reacts with the contaminant and thus reduces
	the amount of undesired compounds in the vapor phase.
Gravity Separator	The Gravity Separator object is used to separate incoming slurry (water + solids) into a
	concentrate and tailings based on the user specification for the two outlet streams.
Heavy Media	The Heavy Media Separator object is used to separate the incoming feed into Accepts
Separator	and Rejects streams based on the user specified washability curves. The most common
	application of the object is for washing coal, though various other applications are also
	possible (e.g., Recycling).
HPGR-MP	The High Pressure Grinding Rolls (HPGR-MP) object has the same functionality as the
	Crusher objects described above. However, HPGR is offered as a separate object due to
	its unique role in mineral processing flow sheets.
Hydrocyclone Plitt	The Hydrocyclone object classifies the solids portion of the feed, which is assumed to
	enter the object with a defined PSD. The object predicts the pressure drop across the
	cyclone as a function of feed conditions (flow rate, solids compositions, etc.), the number
	of cyclones, and the geometry.
Hydrocyclone SR	The Hydrocyclone SR (Separation Ratios) object represents a simplified hydrocyclone
	separation process. Instead of calculating how the feed stream components will be
	separated based on the hydrocyclone geometry and the feed flow rate and PSD, the splits

Mineral Processing -	Modeling of Mining Process
B Library	
	of liquids are defined by the user and the solids splits are either defined or are calculated in the object from the separation function.
Macro Crusher	Macro Crusher object models a basic comminution operation in which the particle size distribution of the feed stream is reduced to a new size according to the user-defined P80, while conserving mass. Some small shifting in the output PSD is possible via the S connector to simulate the effect of variations in the operating conditions. The object calculates the power required to accomplish the particle size reduction from F80 to P80.
Magnetic Separator	The Magnetic Separator object is used to separate incoming slurry (water + solids) into a concentrate and tailings based on the user specification for the two outlet streams.
Mills	The Mill object models a basic comminution operation in which the particle size distribution of the feed stream is reduced to a new size according to a user-defined P80 while conserving mass. With a small shift in the P50, it is possible to simulate the effect variation in the operating conditions such as ore hardness, ball charge, liner conditions, etc. The object calculates the power consumption required to accomplish the reduction in the solid's d80.
Mineral Concentrator	The Mineral Concentrator object is used to separate incoming slurry (water + solids) into a concentrate and tailings based on the user specification for the two outlet streams.
Preheater	The Preheater object is used to heat an incoming slurry or solution with recovered steam. This object first mixes the feed and the recycled steam and then vents the excess steam. The object computes the outlet temperature of the slurry based on the steam flow rate and steam inlet temperature.
Pressure Acid Leach Autoclave	Autoclaves are pressure vessels where ore is reacted with acid at high pressures in order to extract the desired metal (e.g., nickel). The Pressure Acid Leach Autoclave object simulates the high-pressure reaction and gas separation. The object requires the user to provide the chemical reactions and the operating pressure for the reactor.
Screen	The Screen object models a process in which the solids in the feed stream are separated into the Oversize (O/S) stream and the Undersize (U/S) stream. The split ratio is governed by the relationship between the feed rate and PSD and the properties of the screen. The object can represent both dry and wet screening operations.
Single Compartment Autoclave	The Single Compartment Autoclave object is used when the intermediate reactions and additions of reagents, air, cooling water, and steam are not of interest to the user and the autoclave unit can be analyzed as a whole. This object consists of one reactor together with mixers and a gas phase separator.
Solvent Extraction	The Solvent Extraction object selects and transfers metal ions from an impure aqueous phase via an organic phase to a second pure aqueous phase from which the metal of value can be recovered by other processes such as electrowinning, crystallization, and precipitation.
Spiral Classifier	The Spiral Classifier object splits the solids in the feed according to their Particle Size Distribution (PSD) according to the predefined classification curve. The liquid phase is separated from the solids to achieve the required solids concentrations in the overflow and in the rejected solids stream.

Mineral Processing -	Modeling of Mining Process
B Library Spiral Separator	The Spiral Separator object is used to separate incoming slurry (water + solids) into a
Stirred Media Mill	concentrate and tailings based on the user specification for the two outlet streams. The Stirred Media Mill steady-state object is used to simulate the steady-state operation of basic comminution in mineral processing plants.
SX Calculations	The SX Calculations (Solvent Extraction) object is used to calculate the organic phase and aqueous phase separation efficiencies.
SX Unit	The SX Unit object is used to model the extraction of a metal compound from an impure aqueous phase via an organic phase to a second pure aqueous phase from which the metal of value can be recovered by other processes such as electrowinning, crystallization, and precipitation.
Thickener	The Thickener object is used to model the use of a wash solution to divide the components of an incoming slurry into the overflow and the underflow (solids rich) outlets given the solids contents in the respective streams.
Tower Mill	The Tower Mill steady-state object is used to simulate the steady-state operation of basic comminution in mineral processing plants.

Power - B Library	Modeling of Power Plants
Boiler	The Boiler object simulates the operation of either a boiler changing a liquid to a vapor or a superheater adding heat to a vapor. The object calculates the amount of heat generated by burning input fuels and determines the increase in the enthalpy of the inlet stream. The object also calculates the properties of steam at the outlet with respect to the outlet pressure and the amount of heat generated per unit mass of the inlet stream.
Combustion Turbine	The Combustion Turbine object represents a steady- state (Macro) turbo-generator or turbo drive. The object combines a compressor, a combustion chamber and gas turbine functionality in one unit.
Desuperheater	The Desuperheater object is used to bring a superheated steam/vapor stream to saturation conditions by quenching with cold water.
Gas Turbine	The Gas Turbine object represents a steady-state single stage turbo-generator or turbo drive. It can be configured as either a "conventional turbine" or a "demand turbine." The conventional turbine accepts the hot gas as defined by the upstream object and calculates the amount of energy produced.
Macro Burner	The Macro Burner object simulates the operation of combustion equipment burning solid fuel (coal), liquid fuel (oil fuel), or gas fuel (natural gas). The object calculates the adiabatic outlet temperature assuming that complete combustion occurred and determines the flue gas compositions at the outlet.
Power Boiler	The Power Boiler object simulates the operation of a boiler changing a liquid to a vapor through three key components: the economizer, drum, and superheater. The object calculates the amount of heat required by heating the inlet stream (water) to a superheated vapor (steam). The object also calculates the properties of steam at the outlet with respect to the outlet pressure and temperature.

Power - B	Modeling of Power Plants
Library	
Steam	The Deaerator object is used to combine multiple inlet flows plus one steam flow into one outlet
Deaerator	flow at saturation condition.
Steam	The Steam Distributor object is used to split a single stream into six (6) flows to provide greater
Distributor	flexibility when building a model.
Steam Header	The Steam Header object is a Macro object that can be used to simulate the operation of Steam
	Header pipes.
Turbine	The Turbine object is used to simulate a single stage turbo-generator (or can be connected in
	series to simulate a multistage turbo-generator as shown in Figure 2) for steam power
	applications or as a demand turbine (see Figure 3), which calculates the demand steam flow at
	given required power
Turbine - 2	The Turbine - 2 Sections macro object simulates the operation of 2-stage steam turbines in a
Sections	power generating plant.
Turbine - 3	The Turbine - 3 Sections macro object simulates the operation of 3-stage steam turbines in a
Sections	power generating plant.
Turbine Curve	The Turbine Curve Fitter object is used to define up to ten (10) throttle flow and exhaust sets of
Fitter	values and to calculate up to ten (10) efficiency values based on the throttle flow and exhaust
	enthalpy (h) values.